Graphene, a two-dimensional structure made of carbon, is a material with excellent mechani-cal, electronic and optical properties. However, it did not seem suitable for magnetic applica-tions. Together with international partners, Empa researchers have now succeeded in synthesiz-ing a unique nanographene predicted in the 1970s, which conclusively demonstrates that car-bon in very specific forms has magnetic properties that could permit future spintronic applica-tions. The results have just been published in the renowned journal Nature Nanotechnology.
Depending on the shape and orientation of their edges, graphene nanostructures (also known as nanographenes) can have very different properties - for example, they may ex-hibit conducting, semiconducting or insulating behavior. However, one property has so far been elusive: magnetism. Together with colleagues from the Technical University in Dresden, Aalto University in Finland, Max Planck Institute for Polymer Research in Mainz and University of Bern, Empa researchers have now succeeded in building a nanogra-phene with magnetic properties that could be a decisive component for spin-based elec-tronics functioning at room temperature.
Graphene consists only of carbon atoms, but magnetism is a property hardly associated with carbon. So how is it possible for carbon nanomaterials to exhibit magnetism? To un-derstand this, we need to take a trip into the world of chemistry and atomic physics.
The carbon atoms in graphene are arranged in a honeycomb structure. Each carbon atom has three neighbors, with which it forms alternating single or double bonds. In a single bond, one electron from each atom - a so-called valence electron - binds with its neigh-bor; while in a double bond, two electrons from each atom participate. This alternating single and double bond representation of organic compounds is known as the Kekulé structure, named after the German chemist August Kekulé who first proposed this repre-sentation for one of the simplest organic compound, benzene (Figure 1). The rule here is that electron pairs inhabiting the same orbital must differ in their direction of rotation - the so-called spin - a consequence of the quantum mechanical Pauli's exclusion princi-ple.
"However, in certain structures made of hexagons, one can never draw alternating single and double bond patterns that satisfy the bonding requirements of every carbon atom. As a consequence, in such structures, one or more electrons are forced to remain unpaired and cannot form a bond," explains Shantanu Mishra, who is researching novel nanogra-phenes in the Empa nanotech@surfaces laboratory headed by Roman Fasel. This phe-nomenon of involuntary unpairing of electrons is called "topological frustration".
But what does this have to do with magnetism? The answer lies in the "spins" of the elec-trons. The rotation of an electron around its own axis causes a tiny magnetic field, a mag-netic moment. If, as usual, there are two electrons with opposite spins in an orbital of an atom, these magnetic fields cancel each other. If, however, an electron is alone in its or-bital, the magnetic moment remains - and a measurable magnetic field results.
This alone is fascinating. But in order to be able to use the spin of the electrons as circuit elements, one more step is needed. One answer could be a structure that looks like a bow tie under a scanning tunneling microscope.